
M. Math Exam

Question 1

For a fixed j, we need to find Pij = P (Xn+1 = i|Xn = j) for all i. We have
P (Xn = j + 1|Xn−1 = j) = p, P (Xn = 0|Xn−1 = j) = p and P (Xn =
k|Xn−1 = j) = 0 for all other values of k.

If T0 denotes the time of return to zero starting from 0, we have that T0 =
k occurs when we have all successes in the first k−1 tosses and the kth toss is
a failure. Therefore P0(T0 = k) = pk−1(1−p), for k ≥ 1, which is a Geometric
distribution with parameter p. This implies that P1(T1 < ∞) = 1. So by
Proposition 6.3.5 of Athreya and Sunder 2008, we have that 0 is recurrent.

Also, from 0 it is possible to reach any state k ≥ 1 with positive prob-
ability and therefore the Markov chain is irreducible. Thus all states are
recurrent.

Question 2

(i) If y = x, then we have by Proposition 6.3.14 of Athreya and Sunder 2008

that x is transient and
∑

n P
(n)
xx < ∞. Here P

(n)
xx = P0(Xn = x). But we also

have ∑

n

P (n)
xx =

∑

n

Ex(11(Xn = x)) = Ex

∑

n

11(Xn = x) (1)

and the final term is the expected number of visits to x starting from x. In
the above 11(.) refers to the indicator function. Using Fubini’s theorem gives
the necessary interchange.

If y 6= x, and suppose there is a positive probability of eventually reaching
y from x. Starting from y, we then again have expected finite number of visits
to y. Thus again G(x, y) < ∞ in this case.

Finally, if y 6= x, and suppose there is zero probability of reaching y from
x, we have G(x, y) = 0 in this case.
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(ii) As in (1), we have

G(x, y) =
∑

n

P (n)
xy .

Since G(x, y) < ∞, we have limn P
(n)
xy = 0.

(iii) Let x1, ..., xt be the states of the Markov chain and suppose they are
all transient. We then have

lim
n

P (n)
x1,xi

= 0 for all i. (2)

But
∑t

i=1 P
(n)
x1,xi

= 1 since starting from x1, the Markov chain must be in one

of the t states at time n. Allowing n → ∞, we have
∑t

i=1 limn P
(n)
x1,xi

= 1 and
here we interchange limits since the sum is finite. But thus contradicts (2).

Question 3

(i) We have Pij = P (Xn+1 = j|Xn = i) and P 2
ij =

∑
k PikPkj. Also,

P (X2n+2 = j|X2n = i)

=
∑

k

P (X2n+2 = j|X2n+1 = k,X2n = i)P (X2n+1 = k|X2n = i)

=
∑

k

P (X2n+2 = j|X2n+1 = k)P (X2n+1 = k|X2n = i) (3)

=
∑

k

PikPkj

where (3) is due to the Markovian nature. Thus P 2
ij is the transition proba-

bility matrix for {X2n}n.
(ii) Let t be the number of states. Since π is a stationary distribution,

we have
t∑

i=1

π(i)Pij = π(j) for all i, j. (4)
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Using this we have

t∑

i=1

π(i)P 2
ij =

t∑

i=1

π(i)

t∑

k=1

PikPkj

=

t∑

k=1

t∑

i=1

π(i)PikPkj

=

t∑

k=1

π(k)Pkj = π(j)

Thus π is also a stationary distribution for P 2.

(iii) No. Take state space to be {0, 1}, P (Xn+1 = 1|Xn = 0) = 1 and
P (Xn+1 = 0|Xn = 1) = 1. Starting from 0, the Markov chain oscillates be-
tween 0 and 1 at alternate times. Here π = (1, 0) is a stationary distribution
for P 2 but not for P.

Question 4

(i) We condition on the first step X1, to get

Px(Ty = n+1) =
∑

z 6=y

Px(Ty = n+1|X1 = z)Px(X1 = z) =
∑

z 6=y

Pz(Ty = n)Pxz

(5)
For the second equality we argue this way: if in the first step we reach z 6= y,

then n time units are needed to reach y from z. From Markov property the
equation then follows.

(ii) We have

ρxy = Px(Ty < ∞) = Px(Ty = 1) +
∑

k≥2

Px(Ty = k) = Pxy +
∑

k≥2

Px(Ty = k).

For the second term we proceed as follows. Summing (5) over n ≥ 1, we have
∑

n≥1

Px(Ty = n + 1) =
∑

z 6=y

∑

n≥1

Pz(Ty = n)Pxz =
∑

z 6=y

Pxzρzy

since the inner summation in the middle term is precisely the probability
of eventually reaching y from z. In the above, the iterated sums are not
necessarily finite and therefore not directly interchangeable. As before, using
Fubini’s theorem gives the necessary interchange.
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